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A B S T R A C T  

In the s tandard enumeration of homotopy classes of curves on a surface 

as words in a generating set for the fundamental group it is a very hard 

problem to discern those that  are simple. In this paper we describe how 

the complex of simple closed curves on a twice punctured torus E may 

be given a strikingly simple description by representing them as homo- 

topy classes of p a t h s  in a g r o u p o i d  with two base points. Our s tar t ing 

point are the ~h-train tracks developed by Birman and Series. These are 

weighted train tracks parameterizing the simple closed curves on E simi- 

lar to Thurston 's ,  but they are defined relative to a fixed presentation of 
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wl (E). We approach the problem by cutting the surface into two disjoint 

"cylinders"; this decomposes the hi-train tracks into two disjoint parts, 

relative to which all patterns and relations become much more transpar- 
ent, each part reducing essentially to the well-known case of a once punc- 
tured torus. We obtain global coordinates, called ~h,2-weights, for simple 

closed loops. These coordinates can be easily identified with Thurston's 
projective measured lamination space S 3. We also solve the problem 

which originally motivated this work by proving a simple relationship be- 

tween the leading terms of traces of simple loops in a holomorphic family 

of representations p: ~h(E) --+ PSL(2, C) (corresponding to the Maskit 
embedding of the twice punctured torus) and the wl,2-weights. 

1. I n t r o d u c t i o n  

The main objects of study in this paper are the simple closed curves on a twice 

punctured torus ~. We introduce a new model whereby every free homotopy class 

of simple loops 7 on E is assigned to a point i(7 ) E (Z + × Z) 2 called its 7rl,2- 

c o o r d i n a t e s .  Using simple combinatorial procedures, the coordinates i(v) both 

determine, and are determined by, standard representations of 7 as a weighted 

train track or as a word in 7rl(Z). In addition, however, the ~l,2-coordinates 

reveal significant new information. 

Theorem 5.3 reveals a deep connection between the ~h,2-coordinates of a simple 

loop 7 on ~ and the expression of 7 as a word in a given set of generators for 

lrl(~): it addresses, in a precise way, the problem of recognizing patterns in the 

words to say whether or not the loop is simple. 

We apply Theorem 5.3 to a problem that arose in studying the Maskit embed- 

ding of the Teichmiiller space of ~ as a holomorphic family of Kleinian groups 

parametrized by a subset of C 2. The parameters for this family are chosen so 

they are also the plumbing parameters of Kra [8]. The traces of the group el- 

ements are polynomials in the parameters. Let g E r l (E )  represent a simple 

closed curve 7 on E. We prove a remarkable formula, Theorem 6.1, that  gives 

the order and coefficients of the top three terms of the trace of g explicitly in 

terms of i(7 ). This formula generalizes the analogous formula for once punctured 

tori given in [6]. Similar formulae for four and five time punctured spheres are 

proved using different methods in [4]. 

In [7], we will use Theorem 6.1 in connection with the theory of pleating 

coordinates (introduced in [6]) to deduce detailed and precise information about 

the shape of the Maskit embedding in C ~. 
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in the final section, we use 7rl,2-coordinates to make explicit the S a structure 

of Thurston's projective measured lamination space for E. 

Our model is motivated by the 7rl-train tracks introduced by Birman and Series 

in [1]. These are train tracks in the usual sense, but carry additional group 

theoretic information. A 7q-train track is defined relative to a fixed fundamental 

domain R for the action of 7h (E) acting on the hyperbolic plane. It is a train 

track, in the sense of Thurston, all of whose switches lie on OR with at most one 

switch on each side. The switches are named by the corresponding side pairing 

transformations of R, which are a set of geometric generators of rh (E). The point 

is that not only do multiple simple loops on E correspond to weighted train tracks 

in the usual way, but that,  in addition, there is an immediate relationship between 

the weighted rh-train track associated to a simple loop 7 and the word w(7) in 

the geometric generators representing 7 in 7q (E). More precisely, w('y) is exactly 

the sequence of switches traversed in order by 7, and conversely, the weighted 

rrl-train track may be read off mechanically from w(7). 

In this paper, we begin with a specific presentation for the fundamental group 

7rl(E,p), p E E, but show that for many purposes it is simpler and easier to 

decompose E into two cylindrical subsurfaces by cutting along a pair of disjoint 

curves, one passing through each puncture. The point of this decomposition 

is that  we can simplify the 7h-train track by looking at its restriction to each 

cylinder. We call these restricted train tracks Zrl,2-train t r acks  because they 

are related to the fundamental groupoid 7rl,2(~,p1,P2), that is, the groupoid of 

homotopy classes of paths in E with endpoints in the set {Pl,P2}, where one 
basepoint is chosen on each cylinder. 

Once again, a simple closed loop 3' on E defines a unique weighted 7rl,2-train 

track. Our 7rl,2-coordinates i(~,) are easy functions of these weights. Morally, 

the components of i(7 ) are the intersection numbers of the simple loops with 

the longitudinal and meridional curves on the cylinders. Conversely, from points 

in (Z+) 2 x Z 2, we recover weighted 7h,2-train tracks and read off directly cor- 

responding cyclically reduced words both in the groupoid and the group. (See 

Theorem 4.5.) The patterns for simple loops on E in terms of these groupoid 

words are strikingly easy to recognize and this is the basis of Theorem 5.3. 

Our result on trace polynomials is obtained by factoring a representation of 

rq(E) in SL(2, C) as a representation of the groupoid 7r1,2(E ). Effectively, this 

involves factoring the image of one of the generating loops into a product of two 

matrices representing two open paths in the groupoid whose product is the loop. 

The factored product has a surprisingly simple form from which we are able to 
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obtain our result. 

We believe that  the techniques introduced in this paper will have significant 

extensions to surfaces of higher genus and intend to explore these possibilities 

elsewhere. 

This paper  is arranged as follows: In section 2 we set notation and discuss cut- 

ting sequences and the fundamental groupoid. In section 3 we introduce 7rl,2-train 

tracks and in section 4 define 7rl,2-coordinates. In section 5 we prove Theorem 5.3. 

The application to trace polynomials is given in section 6. Finally, in section 7, 

we use 7rl,2-coordinates to give an explicit embedding of projective measured 

lamination space as S 3. Throughout the paper Z + denotes {0, 1,2, 3 , . . .} .  

ACKNOWLEDGEMENT: We would like to thank both David Epstein and Lee 

Mosher for encouraging us to think about groupoids and also the referee for his 

or her careful reading of the paper. 

2. F u n d a m e n t a l  c o n c e p t s  

2.1 THE TWICE PUNCTURED TORUS. Let E be the twice punctured torus 

with fundamental group G = 7rl (E, p), the homotopy classes of loops on E with 

basepoint p C E. Choosing some hyperbolic metric on E, we may realize the 

universal covering space of E as the unit disk D with the hyperbolic metric. Let 

R be a fundamental domain for the action of G on D. We choose R to be a six 

sided geodesic polygon with vertices on OD that  project to the punctures of E 

as shown in Figure 1. 

Label the vertices of R in clockwise order around D by v l , . . . ,  v~. We name 

the side pairing identifications of R as follows (see Figure 1): 

$1 identifies vlv2 with vav3 

$2 identifies vlv6 with v4v5 

T identifies v6v5 with v2v3 

These pairings determine a presentation of G as the free group on $1, $2, T. 

IS±1 S ±1 T ±1~ and, when convenient, we We write Go for the generating set t 1 , 2 , J 

write )~ for X -1, X C Go. 

In Figure 1 we draw R with its basepoint p (a lift of p), and some of the 

adjacent regions. The arc in Figure 1 from p to S i p  projects to a curve on E 

in the homotopy class in 7rl(E,p) corresponding to the element $1. We label 

the common side of R and S IR  by $1 on the side inside R and by $1 on the 

side inside SIR. We label the remaining sides analogously. Thus the side X is 

mapped  to the side ) (  by the generator X for each X E Go. 
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Figure 1. The fundamental domain R. 

Starting from the side vlv2, the 6 sides interior to R are labelled in clockwise 

order { S 1 , T ,  S 1 , S 2 , T ,  S2}. If we need to distinguish between the side and the 

transformation we call the side s ( X )  (note that  s ( X )  does not include the ver- 

tices). We t ransport  the side labelling to the full tiling of D by G and call this 

the G- labe l l ing .  

2 . 2  G - C U T T I N G  SEQUENCES. We recall the method of cutting sequences for 

representing loops on a hyperbolic surface developed in, for example, [2, 11]. 

Let 7 be any closed curve on ~. Let ~ be a lift that  starts on a side of an image 

of R and projects bijectively to 7. Then ~ intersects in order the interiors of the 

images goR, g l R , . . . ,  g k - l R  of R ending on the common side of g k - l R  and gkR. 

Thus ~ is divided into k segments whose translate~ back to R, 7i = g~-l~ N R, 

i = 0 , . . . ,  k - 1 we call the G - s e g m e n t s  o f  7. Let X/ be the label of the side 

between g i - l R  and giR,  interior to giR, i = 1 , . . .  k. We call X 1 . . .  Xk the G- 

c u t t i n g  s e q u e n c e  of 7. Note that  if g represents 7 in G, so that  gk = gog, 

then 
--1 - 1  - 1  

9 = 9o gl • gl 92 • "" gk - lgk  = X1X2  • • • Xk .  

The G-segments for the loop 7* with cutting sequence T S 2 S 1 T S 2 S I T S 1  are 

drawn in Figure 2. 
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Figure 2. The cutting sequence of ~,* is TS2S1TS2S1TS1. 

2.3 REDUCED AND CYCLICALLY REDUCED SEQUENCES. W e  s a y  a G-cutting 

sequence X 1 . . ' X k ,  Xr E Go is r educed  if Xr-1 ¢ )(~, r = 2 , . . . , k .  It is 

cycl ica l ly  r e d u c e d  if in addition X1 ¢ )(k- A loop 7 is r e d u c e d  if its cutting 
sequence is cyclically reduced. We have (see [1, 2]): 

THEOREM 2.1: There are bijective correspondences between 

• Free homotopy classes of reduced loops on E 

• Cyclically reduced words W = X 1 X 2 . . . X k ,  Xi  C Go modulo cyclic 

permutation 

• Conjugacy classes in G. 

2.4 THE FUNDAMENTAL GROUPOID. With slight modifications, the above 

picture can be used to define cutting sequences associated with the fundamental 

groupoid on E with two base points, 7rl,2(~,pl,P2 ). 

This idea is of central importance in what follows. 

Definition: A groupoid G is a pair (X, ~) where X is a base space and the 

elements of ,~ are arrows with endpoints in X. There are two maps l, r: G -4 X 

that  map "~ E G to its initial and final points, respectively. The product 71")'2 is 

defined if' and only if r(71 ) =/(')'2) and then/('Yl')'2) = /(')'1), r(71"r2) = r(')'2). All 
the arrows have inverses; furthermore,/(7 -1) = r(7 ) and vice versa. 
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Definition: The f u n d a m e n t a l  2 -po in t  g r o u p o i d  of E, 7r1,2(E,p1,P2 ) is the 

groupoid with base space B = {pl,P2}, Pi E ~, Pl ~k P2, and arrows consisting 

of homotopy classes of paths in P, with initial and final points in B. 

We realize F -- 7r1,2(P,,pl,p2) as part  of the setup of section 2.2 as follows. In 

the region R, join the vertices Vl and v4 by a line A as in figure 1. This divides R 

into 2 quadrilaterals R1 and R2 with vertices {Vl, v2, v3, v4} and {Vl, v4, v5, v6}, 

respectively. Assume, without loss of generality, that  p C R1 and set Pl  = P. 

Choose a point p '  E R2 and set P2 = P'. We take the projections of Pl ,  P2 as the 

base space {Pl,P2} for the groupoid F. Let Sl be a path joining Pl  and Sip1; s2 

a path  joining P2 and $2p2; {2 a path in R from P2 E R2 to Pl  in R1 crossing 

A; and {1 a path  from Pl  to P2, leaving R1 across the side v2v 3 and reentering R 

into R2 across the side ¢6v5. We denote the projections of the homotopy classes 

of these paths to E by sl,  s2, tl ,  tz and the same paths in the opposite directions 
8--1 t--1 ~'s~l t~l~ by s~ -1, 2 , 1 ,t2 -1' We wr i t eFo  = L ~ , , j.  Where convenient we write 9 

for y - l ,  y C P0. 

2.5 F-CUTTING SEQUENCES. We associate cutting sequences to F as fol- 

lows. We label the (oriented) sides of the regions Ri defined above by symbols 

{s l, 81, s2,82, t l, ~1, t2, t2} in such a way that  the path called y E Fo above has 

cutting sequence y. In other words, the labels si, ~i are given to the sides of R 

that  have the G-labels &, Si respectively. The label tl is given to the side v5v6 

of R2 inside R2, and the label t2 is given to the side viva inside R1. The other 

side of VlV4, inside R2, gets the label t2 and the side v2v3 inside R1 gets the label 

{1. Again, where convenient, we refer to sides as s(y),  y E Fo. 

We refer to this as the F- label l ing.  The F-labelling, like the G-labelling above, 

is t ransported to all of the images of R1 and R2 under the action of G. 

Just  as we did for the G-labelling, we can use the F-labelling to form F-cutting 

sequences of any path  c~ on ~ with endpoints in {Pl,P2}- We get sequences, 

Y l " " Y t ,  Yi E Fo. 

A lift of a loop -y on E to D is decomposed into segments by its intersections 

with sides of R1 and R2. Projecting back down to E, we obtain elements of F. 

Lifting these paths to R1 and R2, we obtain a family of segments that  we call 

the F - s e g m e n t s  of 3' (in analogy with the G-segments defined in section 2.2). 

Using F-cutting sequences it is easy to see that  the paths in Fo are a set of free 

generators. We have a discussion about reduced and cyclically reduced sequences 

completely analogous to that  in section 2.3. 
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2 .6  RELATIONS BETWEEN CUTTING SEQUENCES. In what follows, we will 

need to convert from F to G-cutting sequences. 

Every element of G is a product of the generating loops T, $1, $2 and their 

inverses. Since each loop based at Pl is also an element of F, we find by inspection 

the expressions for T, $1, $2 in terms of elements of F: 

(**) tit2 =-T, t282t2 = $ 2 ,  81 =-$1 .  

These relations may be interpreted either on the level of equivalent cutting 

sequences, or as equalities between homotopy classes of paths (loops) on E. Thus 

any word in G expressed in terms of the generators Go may be expressed using 

relations (**) as a word in the generators F0. 

3. Simple loops and train tracks 

3.1 MULTIPLE SIMPLE LOOPS. In this section we review briefly the relevant 

facts about  7rl-train tracks as introduced in [1] and then extend this notion to 

7h,2-train tracks associated to the fundamental groupoid F = 7rl,2 (E). First we 

recall some basic definitions. 

A loop 3' on E is b o u n d a r y  pa ra l l e l  if it is homotopic to a loop around a 

puncture. 

A simple loop on E is a loop with no self-intersections. A m u l t i p l e  simple 
loop 3' = {3'1, . . . ,  3"k} is a collection of pairwise disjoint simple loops on E, none 

of which is boundary parallel. 

The maximal  number of distinct pairwise disjoint non-boundary parallel homo- 

topy classes of simple loops on E is two. Thus any multiple simple loop 3  ̀on E 

consists of m/dis jo in t  copies of loops 7/, i = 1, 2, where 3̀ 1 and 3'2 are homotopi- 

cally distinct and not boundary parallel and m i  E Z +. For convenience we write 

3' = m13'1 + m23"2. 

3.2 71l-TRAIN TRACKS. The concept of rrl-train tracks for a surface M is 

introduced in [1] where they are used, in conjunction with cutting sequences, to 

s tudy simple loops on M. We briefly recall the definitions involved where the 

surface M in question is E, represented as the region R C D as in section 2.1. 



Vol. 112, 1999 SIMPLE CLOSED CURVES 37 

Definitions: 

• A 7rl- train t r a c k  T on R is a collection of pairwise disjoint arcs, 

a j: [0, 1] --4 R, such that  

aj(0) • 
aj (1)  • s(Xk,), 

a j ( t )  • In tR ,  t • (0, 1), 

Xk, Xk, E G, where s(Xk) and s(Xk,) are distinct sides of R, and such 

tha t  at  most one arc joins each pair of sides. 

• A w e i g h t i n g  # on a 7rl-train track v is an assignment of a non-negative 

number # (a j )  to each are a j  of T. The weighting is i n t e g r a l  if # ( a j )  is 

an integer for each j .  

3.2.1 C o l l a p s i n g  m u l t i p l e  l o o p s  

Definition: A multiple loop 3' is said to be s u p p o r t e d  on a 7rl-train track ~- 

in R if each G-segment of ~ joins sides X, X '  of R for which there is a branch 

a(X,  X') in T. 

Let 3" be a reduced multiple simple loop on E. Since 7 is simple, its G-segments 

are a family of pairwise disjoint arcs in R. Since it reduced, each segment has 

endpoints on two distinct sides of R. We may, therefore, associate to 3' a 7rl- 

train track T(@: ~-(3') has an arc joining sides s, s '  of R if and only if there is a 

G-segment ~i joining the same pair. Clearly, 3' is supported on ~-(3'). 

We define an i n t e g r a l  w e i g h t i n g  #(3') of T(3') by assigning to the arc a(s, s') 
the number of segments of ~/~ joining s to s'. 

3.2 .2  S i m p l e  w o r d s  

A word W = E1 .. - Er E G, Ei E Go, is s i m p l e  if the corresponding homotopy 

class on E has a simple representative 3'. Given a simple cyclically reduced word 

W, we can construct the weighted 7rl-train track (~-(3"),#(3")) as described in 

section 3.2.1. A major  advantage of 70-train tracks, that  is of central importance 

to us here, is that  (~-(3"),#(3')) may also be constructed purely combinatorially 

from the word W as follows: 

For X, Y C Go, X ¢ Y, let 

n ( X , Y )  = # { i  G {1 , . . . , r} lE~ = X, Ei+I = Y, or Ei = Y, Zi+l = f(} 

where we define E~+I = El .  In other words, n(X, Y)  is the number of occurrences 

of either of the two consecutive pairs X Y  or Y X  in the cyclic word W. Using 
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cut t ing  sequences, it is not  hard  to see tha t  ~-(7) will have a s t rand a in R joining 

s(X) to  s(Y) whenever n(X, Y) > 0, and tha t  # (7 ) (a )  = n(X, Y). For example, 

if 7 = 7*, the loop of the example in Figure 2 where W = TS2S1TS2S1TS1, then 

n(T, $1) = n(S1, T) = 1. The  hi- t ra in  track (r(7*), #(7*)) is shown in Figure 3. 

Figure 3. The  hi- t ra in  track (T(7*), #(7*)).  

3.3 71I,2-TRAIN TRACKS. We now adapt  the notion of 7rl-train tracks defined 

relative to  the fixed fundamenta l  region R to the context of the fundamenta l  

groupoid F = 7r1,2(E). To do this, we consider train tracks relative to each of the 

two halves R1, R2 of R defined in section 2.4. 

Definitions: 

• A 7r l , : - t ra in  t r a c k  T is a collection of pairwise disjoint arcs hi,j, i -- 1, 2, 

j = 1 , . . .  , n  on R1 and R2, hi,j: [0,1] -+ /~i, such tha t  ai,j(O) C s(yk), 
hi,j(1) E s(yk,), ai,j(t) E I n t R i ,  t E (0,1), where s(yk) and s(yk,) are 

dist inct  sides of Ri, and such tha t  at  most  one arc joins each pair of sides. 

• A w e i g h t i n g  # on a ~rl,2-train track T is an assignment of a non-negat ive 

number  #(hi , j )  to each arc a~,j of T. The weighting is i n t e g r a l  if #(hi , j )  e 

Z + for each j .  

• An  arc a of r is called a c o r n e r  b r a n c h  if it joins two adjacent sides of 

R1 or of R2. 

Clearly, a t rain track on Ri can have at most  four corner branches and 

one addit ional  arc joining one of the two pairs of opposite sides. 
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Remark: This simple maximal configuration is the same for a once punc- 

tured torus and it is precisely this observation that  makes the decomposi- 

tion of R into R1 and R2 so useful. 

• A multiple simple loop 7 on E is said to be s u p p o r t e d  on a train track 

7(7) in R~ if each F-segment of 7 joins sides s, s '  of Ri for which there is 

a branch a(s ,  s') in ~-. 

The F-segments of a multiple simple reduced loop collapse to form a weighted 

rrl,2-train track (v(7) ,#(7))  which supports 7 in exactly the same way as the 

G-segments collapse to form a rrl-train track. Similarly, we can collapse simple 

reduced F-words just as we collapsed G-words in section 3.2.2. 

The 7rl,2-train track associated to the loop 7* of the example in section 2.2 is 

shown in Figure 4. 

Figure 4. The rl ,2-train track for 3/* with F-word w -- tls2t2sltls2t2s]t2tlsl. 

3.4 PROPER WEIGHTINGS. In [1], necessary and sufficient conditions are 

given on a ~l- train track to ensure that  it comes from a multiple reduced simple 

loop V. Here we carry out an analogous analysis of relations among weights for 

nl,2-train tracks. 

Observe that  when R1 and R2 are projected to E their sides are identified in 

pairs; for example, 8(81) is paired to 8(81) and s(t2) is paired to s(/2). For each 

puncture v on E, there are exactly four corner branches cutting off those sides 

of R1 and R2 that  end at v. These corner branches can be drawn so that  the 

projections of their endpoints link to form a loop around v. 
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It  is thus natural  to impose the following conditions on weighted 71-1, 2 - train 

tracks: 

1. Side pairing relations: the sum of the weights of the arcs landing on a 

given side is the same as the sum of the weights of the arcs landing on the  

paired side. 

2. Boundary relations: if a set of corner branches link to form a loop around 

a puncture  v, then at least one of them has weight zero. 

We call a weighting # satisfying these conditions p r o p e r .  We remark tha t  

the side pairing relations correspond to the switch conditions in Thurs ton ' s  the- 

ory of train tracks, while the boundary  conditions imply no components  of the 

complement  of the train t rack are punctured nullgons; see [9]. 

Wi th  only very minor modifications, we can apply Theorem 1.3 of [1] to get 

THEOREM 3.1: Let ~- be a 7rl,2-train track on R1,R2 with proper integral 

weighting #. Then there is a unique (up to homotopy) multiple simple loop 7 on 

E supported on ~" with #(3') = #- 

I f  the weighting # comes from a simple cyclically reduced word W as in sec- 

tion 3.2.2, then 7 is connected and represents the element W in lrl(E). 

The idea of the proof  is as follows: 

For each a(s ,  s ')  in ~- with n(s, s') 7~ 0, draw n(s, s') strands joining s and 

s ~ in such a way tha t  when all the strands for all the c~'s are drawn, they are 

disjoint. The  crucial point  is tha t  this condition completely determines the o r d e r  

in which these s t rands meet each of the sides of ORi. Hence there is a unique way 

to link up the strands to form a multiple simple loop 7 on E. Since the boundary  

relations are satisfied, 7 contains no loops around the punctures.  In particular,  

if # comes from a simple cyclically reduced word W,  the arcs associated to the 

corresponding simple loop 7 are laid down in the cyclic order determined by the 

word W as in 3.2.2; this is the same as the order determined by the line up of 

the s t rands so we recover the loop 7. | 

Remark: The main significance of this theorem can be summarized as 

• To a cyclically reduced simple word W we can combinatorial ly associate 

a weighted lrl,2-train track 

and 

• The  information contained in a weighted ~rl,2-train track is sufficient to 

completely reconstruct  W up to inversion and cyclic permutat ion.  
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This correspondence between weights, simple words and sequences encodes highly 

non-trivial information. It is this interplay that  is the key to Theorem 5.3 below. 

It  is possible that,  even if a loop 3" is not simple, it may, by the collapsing 

process of 3.2.1, be supported on a 7rl-train track ~-. Counting the number of G- 

segments joining the different pairs of sides will in this case again give a weighting 

~-. (The side pairing conditions will automatically hold but the boundary con- 

ditions may be violated even if 3' contains no boundary parallel loops.) The 

gluing-up process determined by the order of the strands on the sides of the Ri 

will rejoin the G-segments in a cyclic order and the resulting simple (possibly 

multiple) loop will be different from 3'. This simple but fundamental and subtle 

observation is a key tool which provides an easy method to test whether or not 

a given word represents a simple loop. 

In Figure 4, we have drawn the 7rl,2-train track for the loop 3'*. The F-cutting 

sequence for 3'* gives us the word w -- t l~2t291t152t2slt2tlsl  for this train track. 

Contrast  this with the G word W = T S 2 S 1 T S 2 S I T S 1  and the 7rl-train track of 

Figure 3 that  we found for the same loop in section 2.2. 

The reader is encouraged to work out this example carefully in order to fully 

understand how the words and train tracks correspond. 

4. 7rl,2-Coordinates 

We begin this section with a more detailed study of proper weightings. We show 

that  the number of independent parameters  in a proper weighting is four. We 

then associate to any proper weighting (equivalently, to any multiple simple loop 

3' or cyclically reduced simple word W) a set of four integers, called its ~rl,2- 

coordinates, that  completely determine both the underlying lrl,2-train track and 

the weightings on each branch. 

4.1 RELATIONS AMONG WEIGHTS. For convenience we draw the Ri 's  as 

squares and label the strands in them as in Figure 5 where xi, Yi, wi, zi, ui C Z +, 

i = 1, 2. We refer to sides as horizontal, vertical, top, bot tom, left, right relative 

to the configuration shown in Figure 5. Where convenient, we refer to Ri as a 

Ubox~'. 

Definition: If the weights on all four corner strands in Ri are non-zero, we say 

tha t  Ri  c o n t a i n s  a cross .  

LEMMA 4.1: A t  mos t  one of  the two boxes Ri  contains a cross. In the other  

box, either x j  -- z j  = 0 or yj -- w j  = O. 
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Proof: Any  horizontal s t rand corresponds to a side pairing given by an Si and 

thus contr ibutes  only to  the side pairing relation associated to tha t  Si. Its weight 

appears  on both  sides of the  equation for this relation and cancels out. Thus,  we 

may  suppose wi thout  loss of generality tha t  one s trand in each box is vertical; 

see Figure 5. 

U i 

U 

(a)  (b)  

Ui 

# 
• Figure 5. Configurations of a box with a cross. 

The  bounda ry  relations imply tha t  at least one of weights xl ,  Yl, w2, z2 vanishes 

(see section 3.4). Similarly, one of wa, zl, Y2, x2 vanishes. Assume tha t  z2 = 0. If  

Y2 : 0 a l s o ,  then because of the $2 side pairing in the bo t tom box, the weights on 

all the  corner s t rands vanish and we are done. If x~ = 0, opposite corner s t rands 

vanish in the bo t t om box and we are done. Assume, therefore, tha t  x2, Y2 ~ 0 

and hence tha t  either wt -- 0 or zl = 0. The  side pairings by the S~ give 

(1) x l + w l  = Y l + Z l ,  

(2) Y2 = x 2 + w ~ .  

Using the  T pairing and matching the two boxes across the middle give 

(3) x l + u l + Y l  = w 2 + u 2 ,  

(4) Wl + Zl Jr- Ul : x2 Jr- Y2 -~- u2. 

Subst i tu t ing equations (2) and (3) in (4) we obtain 

(5) Wl + zl = 2x2 + Xl ~- Yx. 
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Assume wl = 0. Then  from equations (1) and (5) we get 

x 2 = y l  = 0 .  

On the other  hand, if Zl = 0, then from equations (1) and (5) we get 

Xl ~ _ X 2 = 0 .  II 
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COROLLARY 4.2: The weights on the diagonally opposite corner strands in each 

Ri are equal: 

wl = Yl, Xl = zl, Y2 = w2, x2 = z2. 

Proof: From the lemma above we may assume without  loss of generality tha t  

x2 = z2 = 0. By the $2 side pairing equation (2), Y2 = w2. Now applying 

equat ions (1)-(4) we conclude xl  = Zl and then Yl = Wl as claimed. II 

Remark  4.3: It  follows immediately from this corollary tha t  the total  number  

of s t rands crossing the top and bo t tom sides of each box are equal. This is 

impor tan t  below. 

4.2 DEFINITION OF 71"I,2-COOP~DINATES. From Corollary 4.2, we see easily 

tha t  the number  of independent  parameters  associated to a proper  weighting is 

four. The  r l ,2-coordinates  

i(v) = (ql(V),Pl('~),q2(v),P2('Y)) C (Z + × Z) 2 

of a multiple simple loop "y are a convenient way of encoding this information 

in a form tha t  is global in the sense tha t  it is independent of the underlying 

configuration of strands; indeed (cf. Theorem 4.5 below), the s t rand configuration 

may be recovered directly from i('y). The coordinates are also a convenient way 

of decoupling the information contained in the two boxes. 

De~nition: Let # be a proper  weighting on a 7rl,2-train t rack T. Wi th  the 

nota t ion  of Figure 5 we define 

(6) q~(~) = Ix~-y~J ,  

(7) p~(~) = ~ ( ~  + Ix~ - Y,I). 

if the configurat ion is as in figure 5(a) and we define 

(8 )  q (7) = + - y l, 
(9) Pi(7) = e i lx i -Yi ] ,  
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if it is as in Figure 5(b), where ei = 1 if xi >_ y~ and ei = - 1  otherwise. 

(Recall from Corollary 4.2 tha t  wl = Yl, Xl -- Zl, x2 = z2 and Y2 -- w2.) 

The  mot ivat ion for these definitions is the following. Each R~ projects  to a 

cylinder Ci contained in E, such that  each boundary  curve contains one of the 

punctures.  For the moment ,  think of identifying the boundary  curves on each of 

the cylinders Ci to  obtain  a torus Ti .  The  torus T~ may equally well be thought  

of as being obtained by identifying the horizontal and vertical sides of Ri. By 

Remark  4.3, the numbers  of F-segments of any multiple simple loop 7 meeting 

the top and bo t t om side of each Ri are equal. Thus  we may, in a natura l  way, 

identify the strands of ~/lying in Ri to form a multiple loop 3'i on Ti .  We see 

tha t  Xi -- min(xi,  Yi) copies of each of the corner s trands in Ri glue up to form 

Xi loops around the vertex. The  remaining strands glue to form a multiple of a 

curve homotopic  to a straight line L in the plane R 2 covering Ti.  It  is easy to 

see tha t  this line has slope q~/p~. Thus the sign ofp i  is interpreted as the slope of 

the project ion of 7i on Ti :  the slope is positive if xi > Yi and negative if xi < Yi. 

If xi = Yi, L is either horizontal, q~ = O,pi ~ 0 and ~ is chosen so tha t  Pi > 0, or 

L is vertical and qi > O,pi = O. 

We read off the 7rl,2-coordinates for the loop "y* with F word 

w ~- t182t281tls2t2slt2t182 

of Figure 4 as i(7" ) = (1, 3, - 1 ,  - 2 ) .  

LEMMA 4.4: For any multiple loop 7 on E, q1(7) - q2(7) - 0 m o d 2 .  

Proof'. The union of the two curves Sl and s2 divides E into two components .  

This means tha t  any other curve has algebraic intersection number  zero with 

sl  tA s2 and hence the geometric intersection number  is zero (mod 2). | 

THEOREM 4.5: A n y  quadruple (ql,Pl,q2,P2) with qi E Z+,pi C Z , i  -- 1,2, 

such that ql - q 2  ~ 0 m o d 2 ,  Pi >_ 0 i f  qi = 0 and q 1 2 +  q22 + p l  2 q-p22 ~ 0, 

determines a unique proper weighted 7rl,2-train track on R1, R2. Moreover, this 

correspondence is bijective. 

Proof: To prove the theorem we need only show how to reconstruct  the t rain 

t rack configurat ion and the weights from (ql, Pl, q2, p2). 

First  note tha t  there are sixteen possible configurations as follows. In each 

box Rj  we have a choice of one horizontal or one vertical strand. There  is a 

cross in one of the two boxes R1 or R2 and in the other box we have the choice 

of which pair  of diagonally opposite corners has .zero weight. The  four possible 

configurations in the box without  the cross are shown in Figure 6. 
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- q i  - Pi 

(a) p i > O ,  P i < q i  

qi + Pi 

-2 
(b) Pi < O, - P i  < qi 

Y 
Pi - qi 

(c) p i > 0 ,  P i > q i  

f 
- p i  - q~ 

(d) Pi < 0, -P i  > qi 

Figure 6. Configurations in a box without the cross. 

From Figure 6 it is clear that  if Ri does not contain a cross, then the pair 

(Pi,qi) fully determines the strand configuration and weights in Ri.  If, on the 

other hand, R~ contains a cross, then the configuration and weights in R~ differ 

from those shown in Figure 6 by the addition of the weight X = min(xi, Yi) to 

each of the four corner strands. 

To fully determine the configuration it remains therefore to identify which box 

contains the cross and to find X in terms of the (ql, Pl, q2, P2). Since the sum of the 

weights meeting the horizontal sides agree, we see that  if Ri is the box containing 

the cross then 2x+q~ = qj, where j ~ i. Thus qj >_ qi and X = (qj -q~) /2 .  Hence 

we find that  Ri contains a cross if and only if qi < qj. If qi = qj for i ¢ j then 
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neither box contains a cross. If  qi _< qj, then sett ing X = (qj - qi) /2  we obta in  

the entire configuration and weights as claimed. | 

5. P a t t e r n s  in  s i m p l e  w o r d s  

The  paper  [10] contains a complete characterization of those reduced cut t ing  

sequences on a once punctured  torus tha t  come from simple loops. Up to cyclic 

permuta t ion ,  such a sequence is fully determined by two intersection numbers  

completely analogous to the pair (qi(~), P~ ('Y)) defined in section 4.2. 

While not  a t t empt ing  a full solution of the analogous problem here, we pro- 

ceed far enough in the same direction to be able to prove our main application, 

Theorem 6.1. 

In this section, we discuss in some detail the pat terns  tha t  occur in F-cut t ing  

sequences of simple words. As we shall see in Theorem 5.3, the possibilities for 

sequences corresponding to a simple reduced loop ~, are int imately related to its 

~rl,2-coordinates i('y). 

We begin with an easy observation about  the F-cut t ing sequence of an arbi trary 

reduced loop 7. 

If  B = el . - -e~ and B '  = e ~ . . . e '  s where ei, e~ E F0 for i = 1 , . . . , r  and j = 

. ,  = , . . . . .  ' the a m a l g a m a t i o n  1, . .  s, and if e~ e~ then we call the word el .ere~ ej 

o f  B a n d  B '  and write it as B * B r. We emphasize tha t  the amalgamat ion  of 

B and B ~ only has one copy of the common last letter of B and first letter of 

B ' .  This idea is mot ivated by the definition of a free produc t  of two groups with 

amalgamat ion  along a common  subgroup. 

PROPOSITION 5.1: Let  w be the F-cut t ing sequence of  a reduced loop "7 and  

assume ~/is not  homotopic  to $1 or $2. Then up to cyclic permuta t ion  w is an 

amalgamat ion  o f  blocks 

B1 * D1 * B:  * D2 * . . .  * Br  * Dr 

where Bi  = ais~ 'b i ,Di  = biJ2"ai, k i , l i  E Z, bi E ({2, t l ) ,  ai E ( t l , t2} ,  i -- 

1 , . . . , r .  

P r o d :  Let Ci be the project ion of Ri onto E; each Ci is a cylinder. The  t ra jec tory  

of "y is divided into segments ~,j tha t  are its successive intersections with the 

cylinders Ci. (Note tha t  these segments are not the same as the segments of the  

G- or F-cut t ing  sequences defined in section 2.2 or 2.5.) These segments -y~ lie 

a l ternately  in C1 and C :  and have endpoints  on the boundaries C1 N C2; t h a t  

is, on the project ions of the sides labelled {ti , /~}, i = 1, 2. For each segment 7j, 
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we read  i ts  cu t t i ng  sequence, including the  labels  of the  sides conta in ing  b o t h  

the  ini t ia l  and  final po in ts  of 7j.  Thus,  if 7j C CI ,  we have some sequences of  

the  form t2s~tl ,  k G Z and thei r  inverses; these segments  go into C1 across one 

side and  leave across the  other.  There  are other  sequences of the  forms t2stlE2 

and  [ ls~t l ,  1 E Z; these sequences go into C1 and out  again  across the  same side. 

There  are  s imi lar  blocks for the  segments  7j c 6'2. A m a l g a m a t i n g  these  blocks 

in an obvious way gives the  result .  | 

If we special ize  P ropos i t ion  5.1 to the case where 7 is s imple,  we get  much 

more  informat ion .  We first deal  wi th  a very special  case. 

LEMMA 5.2: Let  7 be a reduced simple loop with ql = q2 = O, that is ~/ has 

7r~,2-coordinates i(v)  = (0, Pl, O, P2). Then 7 is a loop homotopic  to S1 or $2 and, 

moreover, P2 or Pl respect ively  is zero. 

Proof: By L e m m a  4.1, ne i ther  box Ri contains  a cross; hence it is easy to see 

t ha t  7 consis ts  only  of hor izonta l  s t r ands  in each box. Since 7 is connec ted  on 

E, and  since each hor izonta l  s t r and  closes up to form a loop on E homotop ic  to 

S 1 o r  $2, the  resul t  follows. | 

We now tu rn  to  our  ma in  result .  For s impl ic i ty  we make the  s t a t emen t  in the  

case q2 >_ ql;Pl ,P2 >_ 0; q2 ¢ 0. If q2 < ql, we in terchange the  subscr ip t s  1 and  2; 

if pj < 0, we replace  all occurrences  of sj with  s j  1. The  case q2 = 0 is covered 

by the  l e m m a  above.  

For k c Z ,  set 

Ik = tls~t2,  Jk = t2s~tl ,  K = t2slt2,  L = ~-lSltl . 

If A = e l . . . e ~  is a block, wr i te  A or A -1 for the  block ~ . . .  ¢~1. Also, set 

X = Iq2 - q l l /2 .  

THEOREM 5.3: Let  w be the F-cut t ing sequence of  a reduced s imple  loop 7 

wi th  i(~/) = (ql ,Pl ,q2,P2).  A s s u m e  q2 >_ ql;Pl,P2 k 0; q2 ~ 0. Then  (after 

possibie cycIic permuta t ion  and possibly  rep ladng  w by w -1)  w is m a d e  up by 

amalgamat ing  

• q2 blocks Ira1,. • •, I,%2, q2 >- O; 

" ql blocks J ,~ l , . ' - ,  J,~ql, ql >_ O; 

• X blocks K or K and X blocks L or L 
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in sections S,  each of the form 

S = L ±1 * Q , K  ±1 • Q' 

where Q and Q' are blocks of the form 

I k l * J h * I k 2 * ' ' ' * I k ~ ,  r > l ,  ki,liEZ +, 

{ k l , . . . , k r }  C { m l , . . . , m q 2 } ,  {~1 , - . . ,~ r -1}  C { n l , . . . , n q , } .  

(If r = 1 there are no blocks Jl~ .) In w, the q2 blocks Ira, and ql blocks J~j are 

partitioned exactly among the terms Q and O~ in the sections S. I f  q2 = ql ~ 0 
~"~q2 m • (X = 0), then there is only one section of the form Q. In all cases, z_~j=l 3 = 1)2 

and ql E j = I  n j  = Pl. 

Proof: First, we establish which types of blocks occur. The idea is to follow the 

method outlined in Proposition 5.1 watching the directions of the strands and 

how they are identified. 

In the box R2, since P2 _> 0, we are in the configuration given in Figure 6(a) 

or (c). Hence a segment of 3' entering the cylinder 6'2 across the bot tom edge 

of R2 must always contribute t~s~t~, m >_ 0 to the cutting sequence; in other 

words, a block I,~, m _> 0. Blocks from strands entering R2 across the top of R2 

are of the form ira. In the top box, R1, we have the same configuration as in R2, 

with an additional X strands at each corner. Thus a segment of 3" entering across 

the bo t tom of R1 must either contribute t2s'~t~, n > O, if it leaves across the 

top of R2, or t2sl[2 if it leaves across the bottom. This gives blocks J~ or K , /~ .  

Similar reasoning for segments that  enter across the top of R1 gives blocks J,~ 

(for segments leaving across the bottom) and L , / ,  (for segments leaving across 

the top). 

It  remains to count the number of blocks of different types. The total number 

of strands in C2 crossing the bot tom o fR2  is q2, and this is clearly the total 

number of blocks Ira,. Since the occurrences of s~  ~ in blocks I,~j all have positive 

exponents, while those in blocks .Tmj have negative exponents, it follows that  the 
q2 total exponent sum Y~j=I mj  is exactly the number of strands crossing the right 

vertical side of box R2; namely P2. In the top box R1 it is clear that  X = (q2-q l ) /2  

strands from each of the bot tom two corners link up to form X blocks of type K 

o r / ~ .  Similarly, X strands in each of the top two corners link into X blocks of 

type L or L. This deals with 2 ) / =  q2 - ql of the strands crossing each vertical 

side of R1. All other strands crossing the vertical sides of R1 must link in such 

a way that  they enter across the bot tom and leave across the top, or vice versa, 
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forming blocks of type J~j or J~j. The total number of stralads meeting a vertical 

V~ql n - side of R1 is 2X + Pl. Hence we find z_~j=l 3 = pl. 

Now we establish the order in which these blocks are amalgamated to form w. 

All of the blocks that occur are of the form A = xsmy,  z , y  E ( t i , t i } ,  s E 

{si, gi}, i = 1, 2, m E Z. Let A = xs'~y, A'  = x ' ( s ' )ny  ' be two such blocks. Since 

we have included labels for both the initial and final points, it is clear that  in the 

F-cutting sequence for w, A can be followed by A '  if and only if y = x'. In w, 

these two blocks contribute a term A * A'. We call the patterns forced by these 

conditions a d j a c e n c y  rules.  

Applying the adjacency rules applied to the blocks above we see that I can be 

followed by J or K +1 and J can be followed only by I. An L +1 can be followed 

only by I and K +1 can be followed only by i. Likewise i can be followed by J 

or L ±1 and J can only be followed by i. 

Now suppose X > 0. We have shown above that w contains the block L or 

L. The order of the blocks is completely determined by the rules above and 

we deduce the complete pattern of the section 8. Notice that once an L +1 has 

occurred, K +1 is forced later in the section in order for the curve to close up. If 

X = 0, so that there is no L ±1, then there is also no K ±1 and w is of the form Q 

or Q. | 

Example:  The block decomposition for the loop 7* from Figure 4 with word 

w = t l g 2 t 2 s l t l g 2 t 2 s l t 2 t l S l  (where Pl < O, p2 < O) is 

1-1 * J - 1  * I - 1  * K * I o * L .  

6. Appl icat ion  to trace polynomials  

6.1 STATEMENT OF THE THEOREM. In this section, we apply Theorem 5.3 to 

study the traces of the matrices in a specific family of representations p: r l (E)  

SL(2, C) that  correspond to simple closed curves on Z. 

For a, Z C C 2 we define 

(1 (10) o) 
P a ' r ( S 1 ) =  0 1 ' Pa ' r (S2 )=  e 1 , p a , r ( T ) =  T 1 " 

Since 7rl (E) is a free group on the generators $1, $2, T this defines a represen- 

tation 

p = p~,,: r , (E )  --+ SL(2, C). 

If g C Zrl (E), then the matrix coefficients and hence the trace of p(g) are clearly 

polynomials in a and r. The main result of this section is 
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THEOREM 6.1: Let ~, be a simple closed curve on E with i(7) = (ql,Pl,q2,P2) 

where ql + q2 ¢ O. Let 7 be represented by g E ~rl(E). Then Trpo,r(g) is a 

polynomial in a and T of degree q~ in a and q2 in T whose top terms have the 

following form: 

Tr p(g) = 4-21q~-q'l(oq'T q2 + 2plo'qa-l'r u2 + 2p2aq'T q2-1) + O(ql ÷ q 2 -  2) 

= -I-2[q~-qll ((:r q- 2pl/ql)ql(T -b 2p2/q2) q2 q-O(ql +q2- -  2), 

where the notation O(ql + q2 - 2) means terms of degree at most ql in cr and q2 

in r but with total degree in a and z at most ql + q2 - 2. 

Note tha t  if ql + q2 = 0 then P(9) is parabolic; compare Lemma 5.2. If ql = 0 

then Tr p(g) is a function of T alone, and likewise if q2 = 0 then Tr P(g) is a 

function of a alone. 

6.2 MOTIVATION. Although not necessary for what follows, we would like to 

present some motivation for the above result. We discovered Theorem 6.1 in the 

course of our investigations of the Maskit embedding for the Teichmiiller space 

of E. 

For suitable values of a, T E C 2, one can show, using Maskit 's  second com- 

bination theorem, that  G = G(a,z)  = p~,r(Th(E)) is a Kleinian group. Its  

regular set ~ (G)  contains exactly one simply connected invariant component  f~* 

with quotient f F / G  = E and infinitely many non-invariant components that  are 

round disks with quotient two triply punctured spheres (see [7]). By techniques 

analogous to those in [6], one can show that  the set 

M = 7) e 621  , > 0, 7)) has the above properties } 

is an embedding, called the M a s k i t  e m b e d d i n g ,  of the Teichmiiller space of E. 

In [6] we gave a detailed analysis of A41, the corresponding Maskit embedding 

of a once punctured torus El ,  using the method of pleating coordinates. Key to 

that  analysis was a result ([6], proposition 3.1) analogous to Theorem 6.1, about  

the trace polynomials of elements representing simple closed curves on El .  In 

[7] we use ideas similar to those in [6] to give a detailed analysis of the structure 

and boundary of 3,t in which Theorem 6.1 plays a similarly central role. 

An analogous discussion and theorem for trace polynomials in the Maskit 

embedding of the Teichmiiller space of four and five times punctured spheres 

is presented in [4]. 
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6.3 PROOF OF THEOREM 6.1: OUTLINE. Before giving details of the proof  

of Theorem 6.1 we sketch an outline. First we factor p,,,,-(T) as MI(a)M2(T)  in 

such a way tha t  

¢ a , r ( S i )  = p a , r ( S i ) ,  0 a , r ( t l )  = Ml(~r), 0a,r(t2) = M2(T) 

defines a representat ion g)~,, of the fundamental  groupoid F = ~h,2(E) into 

SL(2, C).  Next, we compare G- and F-cut t ing sequences enabling us to express 

Po,,(7) as a p roduc t  o,)(10) 
i=1 0 1 fli 1 

where the ai (resp. ~i) are simple linear functions of a (resp. r) .  Finally, we use 

a general result about  matr ix products  of this form to obtain the result. 

We remark tha t  a much simpler version of this idea, where the factorization of 

p~,~ (T) is not  necessary, may be used to give an alternative proof of proposi t ion 

3.1 of [6]. 

6.4 MATRIX PRODUCTS. For notat ional  purposes we define a family of poly- 

nomials Cn in n variables inductively as follows: 

¢ 0 = 1 ,  ¢ l ( x l ) = x l ,  

C n + l ( X l , . . . , 2 C n + l )  = ~ g n ( X l , . . . , X n ) X n + l  -t- (~n- - l (Xl , - . - ,Xn- -1) .  

These polynomials  are the continuant polynomials known to Euler (see, for 

example, p. 288 of [5]). Applying the definition twice we see tha t  

¢~+2(zl , . . . ,  z~+2) = ¢~+1(xl,.. .  ,x,~+l)x,~+2 + Cn(xl,.. .  ,z~) 

= C n ( X t , . . .  , X n ) ( X n + l X n +  2 -}- 1) + C n _ l ( Z l , . . .  , 2 g n _ l ) X n +  2. 

It  is easy to see tha t  C n ( x l , . . .  ,x,~) is a sum of the following form. The  first 

te rm is the produc t  P = x~ . . . xn ;  the next n - 1 terms are P/ (x j x j+ l )  as j 

varies from 1 to n - 1. The  remaining terms are obtained by dividing P by more 

adjacent  pairs; all we will need about  them is tha t  they are products  of distinct 

xk's,  k E { 0 , . . . ,  n}, such tha t  if n is even there are at most  n/2  - 2 factors with 

k even and the same number  with k odd while if n is odd there are (n - 1)/2 

factors with k even and (n + 1)/2 factors with k odd. Thus,  up to lower order 

terms C n ( x l , . . .  ,x,~) is 

X l X  2 " "" X n - - l X  n Jr- (XlX2 "'" X n - - 3 X n - - 2  -~- X l X 2 " ' "  X n - - 3 X  n "Jr-'' " "~ X 3 X  4 • • • X n - - l X n ) .  

W i t h  this notat ion,  
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PROPOSITION 6.2: 

k ( 1  0/j ) (  1 0 )  
H 0 1 /3 1 j=l 

= ( ¢2k(0/1,/31,''',0/k,3k) 
~ k -  l ( 3 1 ,  0/2 , . . . , 0 /k ,  /3k ) 

Proof: The proof is by induction. It is easy to see that 

¢2k-1(0 /1 ,31 , ' ' ' ,  3k- l ,0 /k)  "~ 
¢2~-2(31,0/2, ,3~-1,0/~)  ) 

0/1 / \ 1 0/21 1 0 / 1 1 0 / (  0 
( 0  1 ) ( /31 1 ) (/32 1 

= ( 1 + 0 / 1 3 1 0 / I ) (  I+0/2/320/2 ) / 3 1  I /32 1 

[ 0/1/31a2/32 + 0/2/32 + 0/1/32 + al/31 + 1 
310/232 +/32 + 31 

-_ (¢,*(0/1,31,a2,/32) ¢3(0/1,/31,0/2)) 
~b3 (31, 0/2, 32) •2 (31,0/2) " 

0/131~2 + a2 + al "~ 
/310/2 -~- 1 ) 

Now assume that the kth product has the required form. The (k-t-1)th product 
is  

(¢2k(0/1, . . . ,3k) ¢2k-l(0/1,...,0/k))( l+0/k+l/3k+l 0/k+l ) 
¢2k-1(31, • - • ,/3k) ¢2k-2 (/~1, ,o/k) 3k+1 1 " 

The top left-hand entry of this product is 

¢2k (0/1,/31,''', O/k, 3k) (0/k+1/3k+l + 1) + ¢2k-1 (0/1,/31,..., 3k-l., 0/k)/3k+1 
= ¢2k+2(0/1,31,..., 0/k+l,ilk+l)- 

The top right-hand entry is 

¢2k(0/1,/31, • • •, o/k,/3k)0/k+l + ¢2k-1 (0 /1 , / 31 , . , / 3k -1 ,  o/k) 

= ¢2k+1 (0 /1 ,31 , . . . ,  3k, 0/k+l)- 

The bottom left-hand entry is 

¢2k-t (31,0/2,''', 0/k,/3k)(0/k+13k+l + 1) + ¢2k-2(31,0/2,..., 3k-1,0/k)3k+l 
: ¢2k+1 (/31,0/2,..., 0/k+l,/3k-bl). 

Finally, the bottom right-hand entry is 

~ ) 2 k -  1 ( .~1 ,0~2 ,  • • • , o /k ,  .~k ) O~k-'l'- 1 + ~ 2 k -  2 ( /31,  OL2, • • " , . ~ k -  1 , 0 / k  ) 

= ¢ 2 k ( ~ 1 , 0 / 2 , " " " , / 3 k ,  0 / k + 1 ) "  
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This means that  the (k ÷ 1)th product has the form 

( ~92k+2(OQ,/~l,...,ak+l,~k+l) ¢2k+l(al,~l,''',]~k,°Ik+l) ) 
~ 2 k + 1 ( 3 1 , ~ 2 ,  , ~ k + l , Z k + ~ )  ~ 2 k ( Z l , ~ 2 , - - - , 3 k , ~ k + l )  

as required. II 

The following immediate corollary will be useful to us later. 

COROLLARY 6.3: The  trace of  

0) 
equals 

53 

6.5 THE FACTORIZATION. We now turn to the factorization of p~,-~(T). The 

idea is to extend the representation P~,T to a representation Ca,r of 7r1,2(E) in such 

a way that  we can exploit the patterns we found in Theorem 5.3 for F-sequences 

of simple closed curves. 

Definitions: 

• A r e p r e s e n t a t i o n  ¢ of F = 7fl,2(~-]0 to SL(2, C) is a map ¢: F --4 SL(2, C) 

such that  ~b(7172 ) -- ¢(71)¢(3'2) whenever 3'172 is defined in F. 

• The representation ¢ is c o m p a t i b l e  with p if ¢(3') = P(3') whenever 3' is 

a loop based at Pl. In particular, 

~ ( s l )  = p ( s l ) ,  V,(tlt2) = p(T) ,  ~,(~2s2t2) = p (s2)  

in accordance with the relations given by relations (**) in section 2.6. 

¢2k (O~1, ~ 1 , ' " " ,  O~k, ]~k) -[- ¢2k-2  (~1 ,0 :2 , -"" ,  ~k -1 ,  C~k) 

= a 1 ~ 1  • • • a k ~ k  + a l / 3 1  - --  a k - 1 3 k - 1  + a 1 ~ 1  • ' • ~ k - - l ~ k  

q - - ' "  -~- Ol232""" Olk~ k q- 310~2 " ' '  ]~k_lOLk -~- O ( k  -- 2, k -- 2), 

where O ( k  - 2, k - 2) means  produc ts  o f  at  mos t  k - 2 o f  the  a j ' s  and k - 2 o f  

the/3j 's. 

Notat ion:  We remark that  we are giving the notation O(j ,  k) above and O(r)  

in Theorem 6.1 two different meanings. Their use will depend on whether we are 

talking about  expressions in a,  ~ or a, T respectively. It will always be clear from 

the context what we mean. 
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PROPOSITION 6.4: Let 7 be a curve on E and let w = el . . .  er, W = E1 ""  Es 

be its F- and G-cutt ing sequences respectively, ei E F0, Ej  C Go. Let p, ¢ be 

compatible representations of F, G respectively in SL(2, C). Then 

¢ ( w ) = ¢ ( e l ) - . . ¢ ( e r ) ,  p ( W ) = p ( E 1 ) . . . p ( E s )  and ¢ ( w ) = p ( W ) .  

Proof." This is clear from the definitions if we note that we may, after cyclic 

permutation or conjugation if necessary, make w a product of loops all starting 

a t  P l .  | 

We also have 

LEMMA 6.5: Let p: G --+ SL(2, C) be a representation of G and suppose 

M1, M2 • SL(2, C) such that MIM2 = p(T), M2p(S2) = p(S~)M2. Set ¢(si)  = 

p(S i ) ,¢ ( t i )  = Mg. For "y • F with F-cutting sequence e l . . . e~ ,  ei • F0, set 

¢(~) = I-I1 ¢(e~). Then ¢ is a representation o f f  compatible with G. 

Proof: Since F is a free groupoid, the definition of ¢ makes sense. The compati- 

bility with p is a consequence of the relations (**). II 

COROLLARY 6.6: 

section 6.1. Then 

( 1  
~ a ' v  (Sl)  = 0 

a n d  

Let p = p~,¢ be the representation of G = 7rl (E) defined in 

(1 (10) 
~bo,,-(tl)= 0 1 , ¢~,, ,( t2)= T 1 

defines a representation o f f  into SL(2, C) compatible with p. 

Proof: We have only to check that the conditions of Proposition 6.4 are satisfied. 

Note that ,  in addition, Ca,r(8i) c o m m u t e s  with ~ba,r(ti). | 

For ~ C C, set 

(1 
M I ( ~ ) =  0 ' ( 1 ' 

so that  in the representation in Corollary 6.6 

~ba,r(Sl) --= Ml(2), ~)a,r(tl) = MI(O'), ~ba,r(S2) = M2(2)¢~,,(t2) = M2(T). 

Note that  Mi(~) commutes with Mi(~) for all ~, r] E C and M/-I(~) -- Mi ( -~ ) ,  

i =  1,2. | 
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LEMMA 6.7: Let 3  ̀ be a simple closed curve with i(3`) = (ql,Pl,q2,P2) and 

suppose that "7 is represented by g E G. Suppose q2 >_ ql;Pl,P2 >_ O, q2 # O. 

Then Pa,r(9) is a product of blocks, each of the form 

M I ( + 2 ) M 2 ( T  + 2 k l ) M l ( ~  + 2 /1)  • • • 

• .. M2(T + 2k~)MI(-I-2)M2(-T - 2 k r + l ) M l ( - c r  - 2/r+l)""" M2(--T - -  2ks). 

The terms and order in this product correspond exactly to the blocks described 

in Theorem 5.3. (Note that the terms involving l~ and ls are missing.) 

Proof: The proof is based on Lemma 6.5. It  is clearly enough to consider the 

image under  p of one section S = L * Q * K * O / in the cut t ing sequence of 3'. 

Amalgamat ing  blocks and regrouping, using the definitions in section 5., we see 

tha t  S can be rewrit ten as 

(fls~ltl)(s~,t2)(s~ltl)(s~2t2) k~ ±1 - - k r + ,  - - l r+ l  ' ' ' ( S  2 t 2 ) ( S l )  ( t 2 s  2 ) ( t l s  1 ) ' ' ' ( t 2 8 2  k ' )  

where ki, li _> 0 and terms with l~ and Is are missing. 

Now note tha t  

¢ ( t l s l t l )  = ~b(Sl) = M1(2), 

= M (2k)M (T) = M2(T + 2k),  

¢ ( s / l t l )  = M l ( ( 7  + 2 l ) .  

Using the count  in Theorem 5.3 the result follows. 

We are finally ready to prove Theorem 6.1. 

6.6 PROOF OF THEOREM 6.1. If  ql ---- q2 = 0 tbe result is trivial. Thus,  

wi thout  loss of generality, we may as usual assume q2 _> ql;pl,P2 >_ O, q2 ~ O. 

We leave the other  cases to the reader. 

We apply Proposi t ion 6.2 to p~,~(g) = ~b(9) using Lemma 6.7. Thus  we set 

k = q2 and j3j = ±(T + 2mj), j = 1 , . . .  ,q2; ql of the a j  are + ( a  + 2nj)  and the 

remaining 2X are ±2.  The  order of the terms is given by the block s t ructure  of 

Theorem 5.3. 

By Corollary 6.3, 

T~(po,,(g)) 

~--- O~1~]1.. .  Olk]~ k -[- O : 1 ~ 1 . . .  O~k-l~k- 1 -[- Oll]~l • • • Olk--l~ k 

+ ' ' "  -~- O~2~2 " • " Otk~k -t- f ~ l a 2 " " "  ~k-lO~k + O ( k  - 2, k - 2). 
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First consider the term allY1 ...  ak/3k. Clearly, this is of degree ql in a and q2 

in 7. We have 

C~1/~1""" Olk~ k 
ql q2 

:t:22x H (a ÷ 2nj)  H (T ÷ 2mj) 
j----1 j----1 

± 2 2 x  O'qlT q2 "4- 2ffqlT qu-1 m j  q- 2(Tql-1T q2 E n j  ÷ O(ql  ÷ q2 -- 2) . 

1 1 

From Theorem 5.3 we have ~ m j  = P2, ~ nj  = Pl, hence this can be written 

{ + + + o ( q l  + q2 - 2 )  

Now consider the terms 

OQ/~I ' " "  a k - - l ~ k -  1 -}- 0~1]~1--. OLk--l~ k 

÷ - - -  ÷ a2f12 " " ' Olkflk n t- fllCg2 - - -  flk_lOlk. 

Each of these products involves dropping two consecutive terms, read cyclically, 

from a product 

:i:2(7-+ 2 m j ) ( a  + 2nj)  . . . (T + 2m~)( + 2)(--~'-- 2m, .+l) ( - -a--  2n,.+2) . . . (--z--2ms).  

Dropping a pair involving a and w lowers the degree by 2. Thus we only need 

consider the effect of dropping consecutive terms when one of the pair is -t-2. 

Recall that  these come from terms L :L1 or K +1. 

Writing =t=2 and the adjacent terms, we have 

• .. (T + 2nj)(-}-2)(--z - 2nj+t) • - •. 

Since we only have to consider terms of degree greater than ql -4- q2 - -  2, we see 

that the terms of degree ql + q2 - 1 obtained by dropping each of the pairs 

-[-(7" ÷ 2• j ) ( - [ -2)  a n d  (-{-2)(--T --  2 n j + l )  

cancel. 

In the remaining terms, denoted by O(k  - 2, k - 2) in the expression for the 

trace in Corollary 6.3, the degree drops by at least 2 in z. Combining all of these 

considerations gives the result. | 
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7. M e a s u r e d  l a m i n a t i o n  space  

In this section we show how nl,2-coordinates relate nicely to the s tandard  

Thurs ton  theory  of projective measured laminations. The  work in this section is 

independent  of sections 5 and 6. 

7.1 BASIC THEORY. We begin by recalling some of the basic theory tha t  we 

shall need. 

De~nitions: See e.g. [9]. 

• A g e o d e s i c  l a m i n a t i o n  A on E is a closed subset A C Z which is a union 

of pairwise disjoint complete simple geodesics on Z called its leaves.  

• A t r a n s v e r s e  m e a s u r e  on A is an assignment of a measure to each arc 

transverse to the leaves of A tha t  is invariant under the push forward maps  

along the leaves of A. 

• A m e a s u r e d  g e o d e s i c  l a m i n a t i o n  on E is a geodesic laminat ion to- 

gether  with a transverse measure; the collection of all measured geodesic 

laminations on E is denoted by ML(E).  

Let  7 be a simple closed curve on ~.. The geodesic freely homotopic  to ~, is a 

special case of a geodesic lamination and we may define a transverse measure (f7 

as follows. To each transverse arc a and each measurable subset E C a assign 

to E the number  of intersections of E with 7- This definition extends easily to 

multiple simple loops: if m 7  + ml71 is such a loop, where m, m I E Z + are the 

respective multiplicities, the leaves of the corresponding geodesic laminat ion A 

are the disjoint geodesics freely homotopic  to the loops 7, 7 '  and the transverse 

measure is rn6. r + m'6.~,. 
More generally, we may clearly form ad7 + c~'~7, with a,  a '  E R +. Such 

measured laminations are called r a t i o n a l :  laminations of this kind are our main  

concern here. 

Let 

V =  {(ql,Pl,q2,P2) EZ4-{(O,O,O,O)} q l - q 2 m o d 2 } /  

where ~, is the equivalence relation 

(ql,Pl,q2,P2) "~ (--ql,--Pl,q2,P2) "~ (ql,Pl,--q2,--P2). 

The choices we made  in 4.2 of qi _> 0 and Pl _> 0 if qi = 0 clearly determine one 

element in each equivalence class of ~.  The  result of Theorem 4.5 is equivalent 
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to showing that  there is a bijection between V and the space of homotopy classes 

of multiple simple loops on E. Let 

9 =- {(ql ,Pa,q: ,P2)}  E R 4 - {(0 ,0 ,0 ,0)}}/  

where ~ is the obvious extension of the relation defining V. Using Theorem 4.5 

we see easily tha t  the map i, that  assigns to a simple closed geodesic ~/, the image 

of its 7rl,2-coordinates i(7 ) in V extends by linearity to a map from the space of 

rational measured laminations onto a dense subset of ~? containing all rational 

points. 

THEOREM 7.1: The map i extends to a homeomorphism ML(E) -+ V. 

Proo~ The essence of this theorem is well known so we give only a sketch here 

(see e.g. [3, 9, 12]). Suppose/3 E ML(E) with underlying lamination A. Since 

all the leaves of A are disjoint and geodesic, their lifts intersect the regions R~ in 

segments forming one of the configurations (a) or (b) of Figure 5. This gives a 

zrl,2-train track. The weight assigned to each branch joining sides s, s '  of R~ is 

the transverse measure of an arc transverse to all segments of A joining sides s to 

s '  and meeting no other segments. From these weights, the numbers qi(/3),P~(/3) 

can be computed as in Theorem 4.5. 

Conversely, given (ql, q2,Pl,P2) ~ V, we use the inequalities among the q~ and 

Pi to identify one of the sixteen strand configurations derived from Figures 5 

and 6 just as in the proof of Theorem 4.5. This gives a proper weighting on the 

corresponding zrl,2-train track. Now we use the method described in [3, 9, 12] (the 

"highway picture") to construct a geodesic lamination with the given weights. 

By using zra- and 7rl,2-train tracks we eliminate all the considerable technicalities 

about  e-curvature of train tracks, bigons, transverse recurrence etc. in [9]. The 

essential point is that  a G- or F-cutting sequence automatically defines a unique 

geodesic in H 2. 

Continuity is clear from the definition of the topology on PML (see, for exam- 

pl , [9]). . 

7.2 THE PIECEWISE LINEAR, CONE STRUCTUR`E OF ML. According to 

Thurston [12, 13, 9], the space ML of measured laminations on any hyperbolic 

surface has a piecewise linear positive cone structure. This means that  ML con- 

sists of a finite number of cells, each of which is a positive cone in a vector space. 

This s tructure is clearly visible in I?: the cells are precisely the regions defined 

by the sixteen different configurations in Theorem 4.5. Two points in V lying in 
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the same cell are suppor ted  on the same rr13-train track and thus we can sensibly 

add positive linear combinat ions of the weights. 

The  cells fit nicely along their boundaries;  for example, the boundary  between 

the partial  configurations in Figure 5(a) and (b) is Pl = 0. 

7.3 PROJECTIVE LAMINATIONS AND S 3. The Thurs ton  theory is mainly con- 

cerned with the space of p r o j e c t i v e  m e a s u r e d  l a m i n a t i o n s  PML(E) ,  which 

is the quotient  of ML(E)  by the relation ~ ~ t/3, t c R +. In our case this means 

tha t  PML(E)  = I ) / R  +, where the equivalence relation is induced by the diagonal 

multiplication of R + on the coordinates. 

According to Thurs ton,  for a surface E of genus g and b punctures  with 3g - 

3 + b > 0, PML(E)  is a sphere of dimension 6g + 2 b -  7. In our case, g = 1, b = 2 

so PML(E)  is S 3. 

Wi th  our coordinates,  it is easy to exhibit this result by an explicit homeo- 

morphism I ) / R  + > S 3. As remarked above, we may regard 17 as 

( R  4 - { ( 0 , 0 , 0 , 0 ) } ) /  

where ~ is the equivalence relation 

(q l ,P l ,q2 ,P2) ' -~ ( -q l , -P l ,q2 ,P2)" .~ (q l ,P l , -q2 , -P2) .  

Since R2/ (q ,p )  ~ ( - q , - p )  is homeomorphic  to R 2 we see tha t  r~ is homeomor-  

phic to R 2 x R 2 - {(0 ,0 ,0 ,0)} ,  which is just  R 4 - {(0 ,0 ,0 ,0)} .  Furthermore,  

the identifications made  preserve rays through the origin and thus commute  with 

the projectivization.  Thus  I ) / R  + is homeomorphic  to (R  4 - {(0, 0, 0 , 0 ) } ) / R  +, 

which is S 3 as claimed. 
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